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1.  Introduction 
With the advent of competition, hourly electricity prices are being determined by a variety of market 
mechanisms, rather than cost-based engineering calculations.  As a result, electric utilities, generators, and 
traders face a new set of short-term forecasting problems.  These problems are unlike those in other 
industries, since electricity must be produced at the same time that it is consumed.  As a result prices are 
determined on an hourly basis, 24 hours a day, 7 days a week.  
 
Historically, price forecasting has been performed with least-cost optimization models.  These models 
compute marginal cost based on assumptions about system loads, power plant availability, and fuel prices.  
These models do not explain price variations related to market strategy and to buyer and seller behaviour 
in a market system.  Statistical models, which by their nature reflect actual market outcomes, are better 
suited to short-term forecasting in this dynamic environment. 
 
In this paper, a variety of modeling approaches are applied and evaluated for forecasting electricity prices.  
Methods include time-series models, regression models, and artificial neural network models.  The paper 
discusses the nature of the price-forecasting problem and identifies reasons why flexible approaches, such 
as neural network models are well suited to this application.  
 
For each approach, model estimates and forecasts are developed using hourly price data for the PJM 
(Pennsylvania, New Jersey and Maryland) power pool area.  The modeling approaches are compared 
based on accuracy for day-ahead forecasting. 
 
2.  Price Modeling Approaches  
In competitive electricity markets, the market-clearing price is the hourly bid of the last generation unit to 
meet system demand.  In most systems, all suppliers are paid the hourly market-clearing price.  In a 
perfectly competitive market, the market-clearing price will be equal to the marginal cost of the last 
supplier.  But existing electricity markets are far from meeting the requirements for perfect competition.  
Reflecting the fact that there are a limited number of suppliers and that customer demand is highly 
inelastic with respect to the market price, there is significant room for exploitation of market power, 
especially in periods of high demand. 
 
There are two approaches being used to forecast market prices.  The first is a simulation method based on 
models of production cost.  The second involves application of statistical methods to historical market 
data.   
 
The production cost method involves a simulation of plant dispatch and inter-pool exchanges to meet 
hourly demands.  These methods typically assume that plants are dispatched based on lowest running cost 
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of the next available generation unit, subject to operating and transmission constraints.  This approach 
requires detailed data and assumptions about inventory of generation plant, including operating 
capabilities, operating costs, and geographic location with respect to transmission facilities.  While these 
models have proven to be very useful for assessing long-term market options, they are not well suited to 
the modeling of bidding strategies in a market setting. 
 
In contrast, statistical methods relate market prices to observed factors that are believed to impact prices.  
These factors can include both demand side and supply side variables, and a variety of model 
specifications and techniques are available.  Since bidding strategies are embedded in the observed 
market outcomes, these methods will work well as long as strategies, constraints, and market rules remain 
stable or evolve slowly.  In what follows, we look at several approaches to short-term statistical modeling 
using data for the PJM market. 
 
Data 
The dependent variable data is the average on-peak price in the PJM market.  The on-peak period is 
defined to be the hours between 8 am and 11 PM, which is a 16-hour block.  Data values are available 
from April 1998 through the present.  The PJM market is currently in transition from a power pool using 
least-cost dispatch to a competitive market based on generator bidding.  At this point PJM prices still 
reflect dispatch costs more than competitor bidding.  Still these prices pose a significant modeling 
challenge, and it is reasonable to believe that methods that work well with these data will also work well 
in a full bidding context. 
 
Explanatory variables fall into three categories.  First, from a time-series perspective, there is the history 
of the market price itself.  In a day-ahead market, lagged price data often have high explanatory power, 
although the pattern of weekdays, weekends, and seasons introduces some interesting modeling problems 
for time-series models. 
 
The second set of explanatory factors is demand-side factors.  Hourly electricity use reflects the life 
patterns of people, mechanical systems interacting with weather, cloud cover, timing of sunrise and 
sunset, water temperatures, and other similar factors.  Because system load can typically be modeled and 
forecasted with high accuracy, we proceed here using the actual demand levels as an explanatory variable, 
rather than the indirect variables for weather and calendar effects. 
 
The third set of explanatory factors is supply-side factors.  These factors include fuel prices, generation 
unit availability, transmission constraints, and in some markets, hydro flows.  Also, in periods of high 
demand the load levels in surrounding areas can have a significant impact on local prices, reflecting the 
high price of imported energy and the high opportunity cost of bidding into the local market.  The supply-
side variables included here are nuclear capacity on-line and natural gas prices.  The data are presented 
below. 
 
Figure 1 shows the PJM average on-peak price.  Over the historical period, the mean value is about $25 
per MWh, and most observations are between $15 and $30.  On several days, however, the price shows a 
significant and short-lived spike, with hourly values nearing $1000, bringing the average on-peak price 
for the day above $100 on occasion.  (In the numbers shown here, the hourly price has been capped at 
$200 before computing the daily average). 
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Figure 1. PJM Average On-Peak Price ($/MWh), April 98 to May 99 
 
Figure 2 shows the corresponding values for on-peak energy use.  These data have an average value of 
about 500 billion Watthours (GWh), implying an average load of about 31 GW during on-peak hours.  
The data show a strong weakly cycle as well as a weather-driven seasonal cycle. 
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Figure 2. PJM On-Peak Energy Demand (GWh), April 98 to May 99 
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Figure 3 shows available nuclear capacity measured in million watts (MW).  The average value is about 
11.5 GW, with a maximum value of about 14 GW.  Unit availability reflects both planned and unplanned 
outages. 
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Figure 3. Available Nuclear Capacity (MW), April 98 to May 99 
 
Finally, Figure 4 shows natural gas prices at the Henry Hub.  The average price over this period was about 
$2.00 per mmBtu, which would translate to a marginal fuel cost of about $20 per MWh at a heat rate of 
10,000 Btu/KWh. 
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Figure 4. Gas Prices at Henry Hub ($/mmBtu), April 98 to May 99 
 
Comparing Figures 1 and 2, it is clear that high prices occur in periods of high demand.  The relationship 
is not perfect, however, as shown in Figure 5.  This figure provides a scatter plot of on-peak prices versus 
on-peak loads, coded by type of day.  The figure shows that all of the high load and high price days are 
weekdays.  However, not all high-load days have high prices.  For example, on days with on-peak energy 
near 700 GWh, the average on-peak price ranges from $40 to more than $100.  Despite this wide 
dispersion, the chart does suggest that the relationship between loads and price is nonlinear. 
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Figure 5: Scatter plot of On-Peak Price vs. Energy 
 
4.  Model Specifications 
A series of models is estimated using these data.  We begin with an exponential smoothing model and an 
ARIMA model.  These data-driven models do not take advantage of the demand and supply-side 
variables.  Next a linear regression model is estimated.  Finally, a neural network extension of the linear 
model is estimated to capture key nonlinearities and interactions.  
 
The forecasting equation for a one-day-ahead forecast with an exponential smoothing model is as follows. 
 
 ( ) 7t1t1tt DayMultTrendLevelP −−− ×+=  (1) 

 
Where P is the value of on-peak prices, t is the current period, and Level, Trend, and DayMult are 
variables generated by the smoothing process.  The smoothing equations use the multiplicative seasonal 
form, sometimes referred to as the Holt-Winters method.  In this application, the seasonal lag is set to 
seven, so that the DayMult variables point to the same day in the previous week.  With this modification, 
the smoothing equations are as follows: 
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The forecasting equation for a one-day-ahead forecast with a seasonal ARIMA model is as follows: 
 
 )sq,sd,sp)(q,d,p(SARIMAPt =  (5) 
 
Where SARIMA represents a seasonal autoregressive (AR) moving average (MA) process with 
autoregressive terms of order p and sp, moving average terms of order q and sq, differencing of order d, 
and seasonal differencing of order sd.  In this application, the seasonal periodicity is seven days, implying 
that seasonal lags point to the same day in the preceding week. 
 
The linear regression model is as follows: 
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Where X represents a set of demand and supply-side explanatory variables.   
 
The extension of the regression model to include nonlinear nodes from a neural network model can then 
be represented as: 
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The first summation in (7) repeats the linear regression from equation (6).  The second summation 
includes a set of N nonlinear nodes from a simple feedforward artificial neural network.  The specific 
form uses logistic transformation functions, which can capture a variety of nonlinear responses.  By 
construction, the variables included in a node are multiplicatively interactive if they have nonzero 
parameters in the sum that appears in the logistic exponent.   
 
The neural network approach and this specific functional form are widely used in day-ahead forecasting 
of system loads.  The approach is well suited to this problem because the response of system load to 
weather is nonlinear and because there are significant interactions among explanatory variables.  (For a 
complete discussion of the neural network functional form, see McMenamin and Monforte, 1998).  As 
seen in Figure 5, the relationship between system load and prices also appears to be nonlinear.  Further, 
there may be important interactions between demand and supply variables that help explain daily 
variations in price.  The neural network equation provides a simple way to allow nonlinearities and 
interactions in the model without imposing restrictive assumptions about the structure of the relationship. 
 
5.  Estimation Results 
The first model estimated is an exponential smoothing model using a Holt-Winters multiplicative form 
with trend and seasonal elements.  As discussed above, the periodicity of the seasonal term is set to 7 days 
for this application with daily data.  The results are summarized below.  This naïve model will serve as a 
reference point.  The mean absolute percent error (MAPE) is 22.6% and the mean absolute deviation is 
about $6 per MWh.  These statistics reflect the accuracy of the model for purposes of day-ahead 
forecasting. 
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Exponential Smoothing Model Summary 
Simple Smoothing Parameter .619 
Trend Parameter -.006 
Seasonal Parameter .321 
Adjusted Observations 397 
Deg. of Freedom for Error 394 
Adjusted R-Squared 0.379 
Std. Error of Regression 9.76 
Mean Abs. Dev. (MAD) 6.02 
Mean Abs. % Err. (MAPE) 22.57% 
Durbin-Watson Statistic 1.816 
Table 1: Exponential Smoothing Summary 
 
The second model estimated is an ARIMA model.  After examination of time-series diagnostics and 
experimentation with various forms, the final model is a (0,1,4) (1,0,0), implying that the data are 
differenced, and a model is fit with an MA4 and a seasonal AR1.  As with the smoothing model, the 
seasonal periodicity is set to 7 days.  The coefficients and summary statistics for this model are presented 
in Table 2.  As is evident in Table 2, the ARIMA model provides only a modest improvement with respect 
to day-ahead accuracy, with a MAPE of 22% and a MAD of $5.8 per MWh. 
 
Variable Coefficient StdErr T-Stat 
CONST -0.007 0.025 -0.265 
SAR(1) 0.219 0.052 4.225 
MA(1) -0.380 0.051 -7.460 
MA(2) -0.247 0.052 -4.717 
MA(3) -0.296 0.053 -5.627 
MA(4) -0.031 0.051 -0.595 
 Summary Statistics  
Adjusted Observations 391 
Adjusted R-Squared 0.415 
AIC 4.528 
BIC 4.589 
Std. Error of Regression 9.55 
Mean Abs. Dev. (MAD) 5.78 
Mean Abs. % Err (MAPE) 22.03% 
Durbin-Watson Statistic 1.992 
Table 2:  ARIMA (0, 1, 4) (1, 0, 0) Summary 
 
The regression model uses a combination of lagged dependent variables and explanatory variables.  The 
three explanatory variables are on-peak energy use (OnPeakEnergy), nuclear availability (NukeAvail), 
and the price of natural gas (HHPrice).  As shown in Table 3, this specification improves the MAPE value 
to 19.5% and reduces the MAD to about $5 per MWh. 
 
The final specification introduces two nonlinear nodes to the linear model presented above.  The first 
node includes only on-peak energy as an input variable.  This node will allow representation of nonlinear 
effects, to the extent these effects are present.  The second node includes the two supply-side variables, 
gas prices and nuclear availability, allowing the modeling of nonlinearities and interactions with respect 
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to these variables.  The extended model is estimated using nonlinear least squares applied to normalized 
data.   
 
Variable Coefficient StdErr T-Stat 
CONST -28.576 5.896 -4.847 
Saturday -1.060 1.574 -0.673 
WkDay -2.017 1.287 -1.567 
Lag1OnPk 0.306 0.050 6.159 
Lag2OnPk -0.021 0.050 -0.419 
Lag3OnPk -0.099 0.050 -1.975 
Lag4OnPk 0.095 0.050 1.877 
Lag5OnPk -0.012 0.054 -0.232 
Lag6OnPk -0.032 0.056 -0.582 
Lag7OnPk 0.046 0.051 0.890 
HHPrice 6.595 1.822 3.620 
NukeAvail -0.002 0.000 -4.974 
OnPeakEnergy 0.116 0.011 10.920 
 Summary Statistics  
Adjusted Observations 392 
Adjusted R-Squared 0.569 
Durbin-Watson Statistic 1.695 
AIC 4.267 
BIC 4.531 
Std. Error of Regression 8.18 
Mean Abs. Dev. (MAD) 5.06 
Mean Abs. % Err. (MAPE) 19.52% 
Table 3:  Regression Model Results 
 
As shown in Table 4, this specification provides a further improvement in model accuracy, with day-
ahead MAPE values dropping to 17% and MAD values dropping to $4.5 per MWh.  The actual and 
predicted values are presented in Figure 6.  As is evident, the model does not fully predict the price spike 
values that occurred in the summer of 1998.  This is not surprising given the price dispersion that is 
evident for high load levels in the scatter plot in Figure 5.  Otherwise, however, the day-ahead model 
tracks actual outcomes and changes in price fairly well. 
 
Comparing the autoregressive terms, the coefficient on the one-day lag of price (Lag1OnPk) is about half 
the level in the neural network model as it is in the regression model.  This indicates that the neural 
network model places higher reliance on the explanatory variables and lessor reliance on the time-series 
properties of the residuals.   
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Coefficient Value StdErr T-Stat 
Linear: Intercept 2.417 1.169 2.068 
Linear: Saturday -0.008 0.039 -0.205 
Linear: WkDay -0.029 0.045 -0.651 
Linear: Lag1OnPk 0.162 0.047 3.469 
Linear: Lag2OnPk -0.094 0.045 -2.065 
Linear: Lag3OnPk -0.065 0.045 -1.442 
Linear: Lag4OnPk 0.090 0.045 2.021 
Linear: Lag5OnPk 0.007 0.048 0.137 
Linear: Lag6OnPk -0.003 0.050 -0.053 
Linear: Lag7OnPk 0.013 0.047 0.283 
Linear: HHPrice -0.263 0.230 -1.141 
Linear: NukeAvail 0.003 0.165 0.018 
Linear: OnPeakEnergy 0.479 0.068 7.086 
Node1: Slope -3.243 0.953 -3.404 
Node1: Bias 8.425 2.472 3.408 
Node1: OnPeakEnergy -3.470 1.226 -2.830 
Node2: Slope 1.659 1.427 1.163 
Node2: Bias -0.348 0.326 -1.066 
Node2: NukeAvail -0.695 0.431 -1.615 
Node2: HHPrice 1.612 1.093 1.475 
 Summary Statistics  
Adjusted Observations 392 
Adjusted R-Squared 0.663 
AIC 4.037 
BIC 4.372 
Std. Error of Regression 7.23 
Mean Abs. Dev. (MAD) 4.49 
Mean Abs. % Err. (MAPE) 17.15% 
Durbin-Watson Statistic 1.619 
Table 4:  Neural Network Model Results 
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Figure 6: Actual and Predicted Values – Neural Network Model 
 
To understand the role of the parts of the neural network model, the contribution of each component (the 
linear component and the two nonlinear nodes) to the total predicted value is presented in Figure 7, Figure 
8, and Figure 9.  The linear node appears to account for most of the seasonal variation and also captures 
weekly cycles.  The first nonlinear node fires only under price-spike conditions.  The second nonlinear 
node is driven mostly by natural gas prices.  This node has the greatest contribution when gas prices are 
high and nuclear capacity is low, as was the case in both the spring of 98 and the spring of 99. 
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Figure 7. Contribution of Linear Terms to Predicted Value 
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Figure 8. Contribution of Node 1 (OnPeakEnergy) to Predicted Value 
 



 Technical White Paper 

13 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Total Predicted Value
Node2 Contribution

 
Figure 9. Contribution of Node 2 (Supply Terms) to Predicted Value 
 
6.  Conclusion 
As competitive electricity markets evolve, interest in price forecasting will increase significantly.  
Whereas under the regulatory compact, utilities are responsible for prudent planning and are guaranteed a 
reasonable rate of return on investment decisions, in a competitive generation market, profits will be 
determined by the relationship between price and cost.  Owners of generation assets will want the best 
possible price forecasts to make the best decisions about contracting and bidding strategies.  Retailers will 
want the best possible price forecasts to develop strategies for covering the loads of their customers.  And 
utilities, which may be both owners of generation and retailers, will be interested in price forecasting for 
purposes of trading and risk management. 
 
As the analysis above suggests, electricity price forecasting is a significant challenge.  Price variation is 
significant on a day-to-day basis, and prices are even more volatile on an hourly basis.  The analysis 
suggests that more advanced modeling methods will produce better forecasts.  Moving from naïve 
methods to advanced methods, such as neural networks reduces the day-ahead forecasting error from 
about $6 per MWh to $4.5 per MWh.  By developing better data about supply side factors, it is reasonable 
to expect that further improvements can be made.  Because of the nonlinear and interactive nature of the 
price responses, this is a good application for neural network approaches, which provide a flexible 
nonlinear method.   
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