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Short Term Energy Forecasting 
with Neural Networks 

J. Smart McMenamin* and Frank A. Monforte** 

Artificial neural networks are beginning to be used by electric utilities 
to forecast hourly system loads on a day-ahead basis. This paper discusses the 
neural network specification in terms of conventional econometric language, 
providing parallel concepts for terms such as training, learning, and nodes in the 
hidden layer. It is shown that these models are flexible nonlinear equations that 
can be estimated using nonlinear least squares, It is argued that these models are 
especially well suited to hourly load forecasting, reflecting the presence of 
important nonlinearities and variable interactions. lhe paperproceeds to show 
how conventional statistics, such as the BIC and WIPE statistics can be used to 
select the number of nodes in the hidden layer. It is concluded that these models 
provide a power@, robust and sensible approach to hourly loadforecasting thai 
will provide modest improvements in forecast accuracy relative to well-specified 
regression models. 

1. INTRODUCTION 

Electricity system operators require near-term forecasts of hourly 
system loads. These forecasts provide the basis for production and maintenance 
scheduling. In addition to the standard tools of regression and time-series 
analysis, approaches using artificial neural networks are being applied to these 
forecasting problems (see Khotanzad et al. 1993, Papalexopolous et al. 1994, 
and Ramanathan et al. 1997). 
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Although neural network models are being used, many analysts in the 
industry treat them as black boxes, and users often do not understand what these 
models are or how they work. In part, this reflects the fact that the modelis are 
developed and presented using a language that is foreign to utility foreca:sters. 
The first purpose of this paper is to present and explain neural network models 
in terms of conventional econometric language. Specifically, building on the 
thinking of White (1989), we will show that neural network models can be 
thought of as flexible nonlinear models, and we will discuss estimation of these 
models using nonlinear least squares. 

The second purpose is to discuss the nature of the hourly load 
forecasting problem. We will show that the problem requires a nonlinear 
specification with a wide range of variable interactions. We argue that this, type 
of problem is well suited to the neural network approach, since estimati’on of 
network parameters will identify the most useful nonlinearities and interactions 
without specifying them explicitly in advance. 

One issue in specifying neural network models is the degree of 
flexibility, which is controlled by the number of nodes in the hidden layer. The 
third purpose of this paper is to demonstrate how conventional sample statistics, 
like the Bayesian Information Criterion (BIC), can be related to out-of-sample 
forecasting performance, as measured by MAD and Mean Absolute Percent 
Error (MAPE) statistics. The results suggest that the BIC can be used tat help 
determine the optimal number of nodes. 

Finally, the estimation results of the neural network model need to be 
analyzed to develop an understanding of the model implications. Specifically, 
model slopes and elasticities can be computed for each observation., and 
examination of these results can provide insights about the time profile of model 
sensitivities as well as the key variable interactions. Using this type of 
information, neural network models can be used to help structure the 
nonlinearities and interactions to be included in regression models. 

Our general conclusion is that neural networks provide a strong 
modeling capability for short-term hourly load forecasting. Since load responses 
to weather variables are nonlinear, and since there are important interactions 
between weather variables and calendar variables, the problem is well suited to 
the neural network approach. As long as neural network models are not 
overspecified, they can provide excellent explanatory power in sample and out 
of sample. 

2. NEURAL NETWORK SPECIFICATION 

Although neural networks can take many functional forms (see Kuan 
and White, 1994), the form that we will use for modeling hourly loads is as 
follows: 
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1 +e 

To understand this nonlinear function, consider the following simple 
example. If the number of explanatory variables (K) is three, and the number 
of nodes (hJ) is two, then the network function takes the following form: 

y”=BO+B,x 1 

1 +e 
-(a0 +0,x; +u*x:+~,x;) 

(2) 

+ B, x 
1 

+u’ 
1 + ,-(bo+b,X;+b2X;+b,X;) 

Although this function is clearly nonlinear in the explanatory variables 
and most of the parameters, it has linear components. This is clear if we rewrite 
the network function as follows: 

Y’=BO+B,xH;+BpH;+uf (3) 

Expressed in the language of the neural network literature, each H in 
equation (3) represents a node in the hidden layer. And, for the particular 
specification we are using here, the output function, which is shown in equation 
(3), is linear in these values. 

Looking more closely at the first node (H,), we see that the exponent 
in the denominator is a linear weighted sum of the explanatory variables and we 
will rewrite this linear weighted sum as follows: 

(4) 

Then, with some rearrangement, we have the following: 
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e 
z; +L=- 

1 + e -‘: 1 + e ‘: 

(5) 

In this form, equation (5) is easily recognized as a binary logit, the 
workhorse of discrete choice models and market share modeling. If Z is a large 
negative number, His close to 0. If Z is 0, His 0.5. And if Z is a large positive 
number, H is close to 1.0. In between, it traces out an S-shaped function. 
Plotting H as a function of Z gives the result depicted in Figure 1. 

Figure 1. Binary Logistic Function 
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This implies that there is an S-shaped relationship between each node 
value (H) and each explanatory variable (X) in that node. This response curve 
may be positively or negatively sloped, depending on the sign of the slope 
coefficient on the X variable. 

In addition, the specification for each node is automatically interactive, 
since we can rewrite the exponential as follows: 

e 
Oo+a,X:+n,X;+ajX;~e*~ee”,X:e’hx~e03X; (6) 
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As a result, each X variable interacts with all other X’s that do not have 
zero slopes in the node. This is a strength of the specification if the underlying 
process has multiplicative interactions. 

Implications of Parallelism 

Returning to equations (1) and (2), it is clear that each explanatory 
variable appears several times on the right-hand side of the equation and in 
exactly the same algebraic form. This repetitive property is called parallelism, 
and it is one of the strengths of the approach. 

This point is a major concern to forecasters schooled in econometrics. 
Repetition of explanatory functions on the right hand side of the equation looks 
like an acute form of multicollinearity. The flexibility of the neural network 
model, however, comes from the fact that different parameters will be found for 
each node, allowing each node to serve a specialized function. This requires an 
estimation approach that starts with a different set of initial parameter values for 
each node. From these initial starting points, the role of each node will evolve 
as estimation proceeds. 

Since each node will process input data values differently, the 
specification allows for a variety of nonlinearities and for a range of variable 
interactions. For example, in the first node, variations in X could be causing 
movement in the linear part of the logistic equation (2 between -1 and + l), and 
in the second node, variations in X might be operating in the top part of the 
S-shape (2 between 1 and 4). This could produce results very similar to 
inclusion of both X and In(X) as explanatory variables in a regression model. 

As another example, if you combine two logistic curves, one positively 
sloped and one negatively sloped, the result could be a U-shaped response over 
the relevant range of an Xvariable, which is similar to inclusion of squared term 
for that X variable. 

Neural Network Terminology 

In neural network terms, equation (1) has the following properties: 

. It is a feedforward artificial neural network with a single output. 

. It has one hidden layer with multiple nodes. 

. It uses logistic transfer functions in each node of the hidden layer. 

. It uses a linear transfer function at the output layer. 

To understand why the neural network is called feedforward, it is useful 
to draw the classic neural net diagram. As shown in Figure 2, the explanatory 
variables (X) enter at the bottom in the input layer. The logistic transfer 
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functions appear in the hidden layer. And the dependent variable (Y) appears in 
the output layer. 

The idea is that the input variables feed into the nodes in the hidden 
layer, and there is no feedback. Further, the nodes do not feed sideways into 
each other. Instead, they feed onward to the output layer. There is no la,gged 
feedback from the output layer to the hidden layer nodes. The absence of 
feedbacks or node-level interactions makes it a feedforward system. If there are 
lagged feedbacks from the output layer to the hidden layer, then it is called a 
recurrent system. 

Figure 2. Network Diagram with Three Xs, and Two Nodes 

output-* 
Layer 0 Y Y’=Bo+B,xH;+BZxH;+u’ 

f Y 1 

Hidden ) 

Although the term “hidden layer” is meaningful in neural science 
models, this terminology is of no particular value for time-series forecasting. 
The hidden layer is just part of the model specification. It is important to 
understand the functional specification that is used in this component since it is 
the source of all nonlinearities and interactions in the model. 

Moving from the hidden layer to the output layer, equation (1) uses a 
linear transfer function. We could include some additional nonlinearity at this 
level. For example, for Y variables that have a discrete outcome, such as a 
binary (0,l) variable, a logistic activation function at the output layer would 
probably be desirable. But for forecasting problems with continuous output 
variables, it is not clear that there is any gain from further nonlinearity at this 
level. 

3. ESTIMATION APPROACHES FOR NEURAL NETWORKS 

In the neural network literature, the process of parameter estimation is 
called training. The goal of the training process is to find network parameters 
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that make the model errors small. The estimation process is more complicated 
than for a regression model because the model is nonlinear and because the 
objective function is relatively complicated. 

Many neural network programs use some variant of a method called1 
backpropogation, following the lead of Rummelhart et al. (1986). For the type 
of forecasting problem addressed here, this approach is unnecessarily slow and. 
cumbersome (see the discussion in Masters, 1995). In what follows, we use a. 
conventional nonlinear least squares algorithm to find parameter solutions. 
Specifically, we use the Levenberg-Marquat (LM) algorithm in the IMSL library 
(IMSL, 1994). 

The estimation algorithm works as follows. First, a set of random 
values are assigned to the model parameters. Given this set of parameter values, 
predicted values and residuals are computed for each observation, along with the 
derivatives of the residuals with respect to changes in each parameter. The LM 
algorithm uses this information to change the parameters to new values that will 
reduce the sum of squared errors. These revised values provide a new starting 
point, and the revision process is repeated. For the data examined here, the 
parameter values usually converge within reasonable tolerance within 100 
iterations through the data. 

Multiple Optima 

Parameter estimation is a well behaved process for most common 
statistical problems, such as finding the solution to a nonlinear regression model 
or solving the parameters of an ARMA model. However, because of the 
parallelism property, which reflects the inclusion of multiple nodes in the hidden 
layer, it can be shown that the least squares objective function for a neural 
network is extremely complex with a huge number of local optima, as opposed 
to a single global optimum (Goffe, Ferrier, and Rogers, 1994). 

Because of this complexity, it is necessary to explore a wide region of 
the parameter space to find a relatively good solution. Merely going downhill 
from a single random starting point to the nearest local optimum will not do the 
job. This is equally true for estimation approaches based on backpropogation as 
it is for approaches based on mathematical optimization. Using a multiple-seed 
approach, we have found that estimation from 20 alternative random starting 
points is fairly certain to produce several strong solutions for problems of the 
type studied here. 

The rule that we use to select the final model parameters is based on 
an average of in-sample and out-of-sample error statistics. To develop these 
statistics, estimation from each random starting point is based on a subset of the 
sample data. Once a solution is found, these parameters are used to test the 
power of the estimated parameters, based on the observations that have been 
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withheld from the estimation process. Usually, solutions that perform well in 
sample also perform well out of sample, but this is not always the case. 
Especially with a large number of nodes, some of the solutions will be more 
specialized to the specific cases in the sample, and some will be more stable and 
more useful out of sample. 

The fact that there are many solutions that have comparable 
performance is neither surprising nor disturbing. This implies that there are a 
large number nonlinear specifications that provide similar performance:. The 
same result holds for most regression models, in that minor variations in the 
specification usually do not alter the model results significantly. 

Continued Learning 

As new data become available, it is natural to re-estimate parameters 
with the extended sample period. In the neural network literature the update 
process to incorporate new data is called learning. This terminology stems from 
the backpropogation method, in which learning is treated as an extension of the 
process used in training. Although learning is not the focus of this paper, this 
is a point of confusion for many analysts who believe that learning is a unique 
property of neural networks. 

With linear least squares models, updating the parameters with 
additional data is a full re-estimation of the model, and the new data typically 
are given the same weighting as the earlier data. For nonlinear least squares, the 
re-estimation process can begin with the same set of initial guesses that were 
used to start the original estimation process or it can begin with the solution 
from that estimation. Either way, for problems with a well-behaved objective 
function, the final solution will be the single set of parameters that correspond 
to the global optimum based on the expanded data set. 

For neural networks, which are known to have a large number of local 
optima, the situation is a bit different. In this case, it seems natural to start with 
the parameters from the training process and re-optimize with the new data 
included. However, starting at the training solution implies starting with the 
specific set of nonlinearities and variable interactions represented b:y that 
solution. From this starting point, re-estimation with the expanded data typically 
leads to minor changes in the estimated parameters. This implies that you are 
staying at the same local optimum at which you started, and that the locat.ion of 
this solution does not move much because of the new data. In this sense, the 
new data play less of a role than the earlier data. In essence, the functional form 
was determined in the training process, which looked at many solutions and 
selected one, and the new data are used only to refine parameters given that 
functional form. To give the new data equal play with the earlier data, it would 
be necessary to repeat the entire training process with the expanded data. set. 
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4. SUMMARY STATISTICS AND TEST STATISTICS FOR NEURAL 
NETWORKS 

There are a wide variety of standard statistics that can be used to 
evaluate the performance of a neural network model. Once parameters are 
estimated, a full set of residuals can be computed for in-sample and out-of- 
sample observations. Then traditional measures of fit, such as R-square 
statistics, the model standard error, MAD, MAPE, and BIC can be computed. 

Properties of the error term have not received much attention in the 
context of neural networks. In part, this reflects the type of problems to which 
they have most often been applied, many of which fall into the area of pattern 
recognition. In a time-series context, however, the error term for a neural 
network model faces the same potential set of issues as in a linear model. There 
may be excluded variables, errors in variables, or a systematic error process, 
implying that there is still information remaining in the estimated residuals. 

Regarding error processes, the residuals of the neural network model 
can be used to compute all of the standard statistics, including the Durbin- 
Watson statistic, the Ljung-Box statistic, and the ACF and PACF patterns. If 
these statistics indicate that the residuals follow a time-series process, such as 
an AR process or a short MA process, then the nonlinear estimation algorithm 
can be extended to include estimation of the parameters of the ARMA process. 

Model Sensitivities 

In a linear model, each explanatory variable has a slope parameter, and 
this slope equals the derivative of the predicted value with respect to that 
variable. The slopes can be converted to estimated elasticities in each period by 
multiplying the slope by the ratio of the explanatory variable to the dependent 
variable (X/Y) for that observation. 

For neural networks, the result is similar, but significantly more 
complicated. Because of the nonlinearities and interactions inherent in the 
specification, the derivative of the predicted value with respect to an explanatory 
variable will usually have a different value for each observation. The elasticity 
value in each period can then be computed using the derivative value in that 
period. 

In fact, one of the potential uses of neural networks is to do exploratory 
analysis. For example, you can place your data in a network with a small 
number of nodes, do some training, and look at the pattern of the slopes and 
elasticities over time. Analysis of these results can lead to a better understanding 
of the factors that determine how model sensitivities vary over time and which 
variable interactions are important. 
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Number of Nodes 

Although there is no hard and fast rule, for most time-series problems 
that we have looked at, the optimal number of nodes appears to be between two 
and five. Of course, as you add nodes, the in-sample fit always improves. That 
is, the sum of squared errors will always decline if you add more parameters. 
However, beyond a point, the coefficients have the freedom to specialize in 
order to explain specific events in the sample period, and these specialized 
results do not necessarily generalize to out-of-sample conditions. 

There are no established statistics or procedures for deciding on the 
number of nodes. From the econometric side, the following types of statilstics 
are relevant to this issue: 

. Adjusted R Square, 

. Akaike Information Criterion (AIC), and 

. Bayesian Information Criterion (BIC). 

All of these statistics improve when the sum of squared errors is 
reduced, but impose a penalty for the increased number of coefficients. As will 
be seen below, we find that of these statistics the BIC provides a useful guide 
for model specification purposes. 

5. DATA 

The dependent variable data is the hourly system load for an electric 
utility in the Southwest U.S. for 1993, giving a total of 8,760 observations. 
Corresponding data for hourly temperatures, humidity levels, cloud cover, and 
wind speed were obtained from the National Oceanic and Atmospheric 
Administration. In addition to these data, the calendar for that year gives a 
variety of day-type variables, such as day of the week and the timing of 
holidays. Finally, data on the time of sunrise and sunset provides other 
important seasonal information. 

The model is applied separately to data for each hour of the day. For 
purposes of presentation, we focus on the data for 3 p.m. Figure 3 shows a 
scatter plot of the load each day at 3 p.m. against the corresponding dry-bulb 
temperature at that hour. The points are coded with symbols that separate 
weekends and holidays from the weekdays in each season. As is clear from this 
plot, there is significant variation in the system load at this hour for a given 
temperature, leaving much to be explained by other conditions and calendar 
variables. 
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Figure 3. Loads Versus Temperature at 3 p.m. 
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Nonlinearities and Interactions 

As is evident from Figure 3, the relationship between the hourly loads 
and temperature appears to be nonlinear. Specifically, in winter months when 
it is cold, increases in the temperature appear to reduce the load. This probably 
reflects reductions in electric heating loads. In contrast, in summer, increased 
temperature values appear to be strongly correlated with increased loads. 
Although this slope appears to be positive in spring and fall months, the weather 
response slope does not appear to be as large as in the summer months. 

As indicated in Table 1, there are a significant number of potential 
explanatory variables. The exact set that are available for modeling depends on 
the timing of the forecast. For example, for a day-ahead forecast that must be 
developed by 4 p.m. each day, the most recent value that can be included as a 
lagged load is the system load as of 3 p.m. Of course, earlier values, such as 
the load in the morning, can also be included since these values will be known 
at the time of the forecast. 

The difficult part of model specification for an econometric approach 
to this problem concerns the variable interactions. The most important examples 
are the interactions between weather variables and calendar variables, the 
interactions between lagged loads and calendar variables, and the interactions 
among weather variables. Brief examples of these interactions are discussed 
below. 
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Table 1. Summary of Explanatory Variables 

Weather Calendar Lagged Loads 

Coincident Temperature 
Daily High 

Daily Low 
Cumulative Temperature 

Temperature Gradient 
Humidity 

Wind Speed 
Cloud Cover 

< 

Day of the Week 
Month/Season 

Holidays 
Days near holidays 

Sunrise & Sunset 

Interactions 

Morning (day-l) 
Afternoon (day-l) 

Same hour (day-l) 
Same hour (day-2) 

>. 

. Weather and Calendar Vuriubles. It is clear from inspection of the data 
that an extra degree of temperature has a different impact on a weekday 
than on a weekend day or holiday. For that matter, the Saturday slope 
may be different from the Sunday slope, and, as discussed above, the 
weekday slopes in winter for a given temperature are different than the 
weekday slopes in summer. These facts suggest that temperature data 
must be interacted with day-of-the-week variables and seasom, at a 
minimum. 

. Lagged Loads and Calendar Variables. Lagged loads are powerful 
explanatory variables in next-day forecasting exercises. And it is fair 
to include these variables in a model, since the data values are known 
at the time of the forecast. However, the relationship between 
yesterday’s load and today’s load differs significantly across days. On 
a Monday, the lagged load is for a Sunday, and therefore the slope is 
different than on a Tuesday, when the lagged load is for a Monday. 
For some Tuesdays, however, the lagged load is for a Monday holiday. 
These and other interactions must be allowed in the model so that the 
differential influence of lagged loads can be estimated across different 
day types. 

. Weather Variable Interactions. Laws of thermodynamics and the 
presence of heating and cooling equipment suggest some important 
interactions. For example, the influence of increased wind speed in the 
summer should be negative, due to lowered cooling loads. However in 
the winter, increased wind implies wind chill which raises :heating 
loads. Similarly, cloud cover in the summer lowers cooling loaIds, and 
cloud cover in the winter can increase heating loads. Further, the role 
of humidity may be different in the winter than in the summer These 
interactions imply that the slopes on these types of weather variables 
can switch signs depending on other conditions. 



Short Term Energy Forecasting / 5’5 

6. MODEL ESTIMATES 

As a point of reference, a linear regression model was estimated with 
various combinations of the variables and appropriate interactions. The 
regression model includes all of the factors listed above as explanatory variables. 
Specifics are as follows: 

. Daily high and low temperature variables are included in the model, 
since this resulted in a better fit than use of the coincident temperature 
alone. 

. For the high and low temperature variables, squared terms are included 
to allow for nonlinear responses, and different temperature slopes are 
estimated for weekdays versus weekend days and for each season. 

Lagged load values are included for 8 a.m. and 2 p.m. the preceding 
day. Both of these variables are interacted with day type and season 
variables. 

The results of the regression are depicted in Figure 4. The overall mean 
absolute percent error (MAPE) was 1.90%, which is a good result for this type 
of data. 

Figure 4. Actual Vs. Predicted Loads at 3 p.m. - Regression Model 
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Neural Network Models 

Estimation was repeated using the neural network model described 
above. Variables included in the model were daily high and low temperatures, 
humidity, cloud cover, wind speed, lagged loads from the preceding day., and 
calendar variables including day of the week and season. All variables were 
included in all nodes and all nodes used an S-shaped activation function based 
on the logistic curve, as shown in equations (1) and (2). 

To examine alternative levels of flexibility, the number of hidden layer nodes 
was varied from 1 to 5. For each level, 20 random starting points were utilized. 
The results from each of the 20 trials were compared, and the final specification 
was chosen to be the trial that produced the lowest average for the in-sample and 
out-of-sample MAPE statistics. 

The results of these training exercises are summarized in Table 2:. 

Table 2. The Contribution of Additional Nodes 

# of Adjusted 

Nodes R Square 

1 0.939 
2 0.959 
3 0.961 
4 0.966 
5 0.968 

AIC BIC 

9.95 10.18 
9.61 10.07 
9.60 10.28 
9.51 10.41 

9.49 10.61 

Sample Test 
MAPE (%) MAPE (%) 

2.35 2.24 
1.87 1.81 
1.72 1.71 
1.56 1.77 
1.45 2.16 

As shown in the table, as additional nodes are added, the in-sample 
MAPE declines steadily. Similarly, the adjusted R square increases steadily, and 
the AK statistic decreases steadily. In both cases, this indicates that the 
improvement in model fit outweighs the penalty caused by an increased number 
of coefficients. In contrast, the BIC statistic is lowest for the specification with 
two nodes, suggesting a possible loss of predictive power as the number of 
nodes is increased beyond this range. 

The out-of-sample MAPE value is at a minimum for the three-node 
specification, with a value of 1.7 1% . Although the lowest out-of-sample MAPE 
does not correspond exactly with the minimum BIC value, this result suggests 
that the number of nodes should not be extended far beyond the point whe:re the 
BIC turns upward. 

Both the in-sample and out-of-sample fit for the three-node specification 
are slightly better than we could obtain with a linear regression model (MAPE 
= 1.90%), despite efforts to include in the regression model what we expected 
to be the most important nonlinearities and interaction terms. 
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The plot of actual and predicted values for the 3-node specification is 
presented in Figure 5. As seen here the pattern of predicted values is veqr 
similar to the regression result presented in Figure 4. Examination of the 
residuals verified that the observations with the largest errors were the same for 
both modeling approaches. 

Figure 5. Actual Vs. Predicted Loads at 3 p.m. - Neural Network Model 
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In addition to the summary statistics presented above, the model 
residuals were examined for presence of autocorrelation. The Durbin-Watson 
statistic for the 3-node model was 2.04, indicating absence of first order 
autocorrelation. Similarly, the Ljung-Box statistic was 23, and the probability 
of a greater value was 67%, indicating lack of evidence of higher-order 
autocorrelation problems. 

Model Derivatives 

As discussed above, the neural network model is both nonlinear and 
interactive by construction. The results from the network with three nodes were 
examined in detail, including computation and analysis of the period-by-period 
slopes and elasticities. The following focuses on the derivatives of load with 
respect to daily high and low temperatures. The monthly average values for 
these derivatives are plotted in Figure 6. 
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Figure 6. Plot of Model Derivatives of Load With Respect to Temperalture 
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As seen in the figure, the slope with respect to the daily high 
temperature varies significantly through the year. In the winter months, this 
slope is a small negative value. In the summer months, the slope increase:; to a 
relatively stable value of about 50 MW per degree F. There is a steady 
transition upward in the spring months of March through May, and a steady 
downward transition from September through November. 

The slope with respect to the daily low is a small positive value in the 
winter months. It remains relatively stable from April through October, between 
10 and 15 MW per degree. 

Model Training 

To evaluate the relationship between in-sample and out-of-sample 
statistics, the 3-node model was estimated using 1,000 random starting points. 
The results are summarized in Figure 7. As shown, the in-sample summary 
statistics range from a low of 1.6% to a high value of 2.2%. Similarly, the out- 
of-sample fit statistics range from a low of 1.6% to a high of over 3.0%. The 
model solutions toward the lower left-hand corner of the chart are the solutions 
that fit well for both the in-sample and out-of-sample periods. 
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Figure 7. In-Sample Versus Out-of-Sample MAPE 
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Other Hours 

Applying the same method to other hours of the day provides a set of 
models that can be used to forecast next-day loads. Across hours, the in-sample 
and out-of-sample MAPE values range from a low of 1.3% to a high of 1.8%. 
Generally speaking, the later hours of the day have larger errors, reflecting the 
fact that they are “longer” forecasts than the early morning hours. That is, the 
most recent load information included in the model is the load at 2 p.m. As a 
result, the forecast for 1 a.m. the following day is an ll-hour ahead forecast. 
In comparison, the forecast for hour 24 the following day is a 34-hour ahead 
forecast. 

To visualize the predictive power of this set of hourly models, actual 
and predicted values for the summer and winter peak weeks are shown in Figure 
8 and Figure 9. 



60 / The Energy Journal 

Figure 8. 1993 Summer Peak Week 
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Figure 9. 1993 Winter Peak Week 
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7. CONCLUSION 

Artificial neural networks provide a flexible nonlinear modeling 
framework. These models are well suited to short-term forecasting tasks, such 
as hourly system load forecasting for electric utilities, where there are important 
nonlinearities and variable interactions. 
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There is a danger, however, that the approach will be treated as a blaclc 
box, and something that is difficult to understand. As we have shown here, these 
models have much in common with standard econometric approaches, and can 
be discussed in terms that are familiar to individuals who are comfortable with 
structural econometric forecasting. Also, the models can be evaluated and 
compared based on a variety of standard model statistics, such as R squares, 
MAD and MAPE values, and Durbin-Watson statistics. 

The key difference is in the flexibility of these models. Estimation of 
parameters is a bigger task because the training exercise amounts to a search for 
a useful functional form. That is, for a given number of nodes, training involves 
the search for a set of nonlinearities and interactions that provide the best modeI 
fit to the historical data. The objective function for error minimization is 
exceedingly complex, because there are a large number of solutions that are 
locally optimal and that fit the data well. As a result, it is necessary to search 
the parameter space to find a good solution-one that works well both in sample 
and in reserved test periods. 

As long as the number of nodes is kept to a reasonable level, the result 
is a forecasting model that is powerful, robust, and sensible. This method is 
useful for forecasting and, at least in our experience, it produces models that are 
slightly more accurate than a wide variety of regression model specifications. 
The neural network approach can also be used for exploratory analysis related. 
to functional form. Specifically, examination of the pattern of estimated slopes, 
and elasticities can be used to explore for important nonlinearities and variable: 
interactions, and these insights can be used to strengthen regression model 
specifications. 
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